

State Notation LanguageState Notation Language
 and the Sequencer and the Sequencer

NSLS-II EPICS Training

Ralph Lange <rlange@bnl.gov>

AcknowledgementsAcknowledgements

● Slides for this presentation have been taken from talks
prepared by the following people:

● Andrew Johnson (Argonne)
● Bob Dalesio (LANL/SNS/LCLS/BNL)
● Deb Kerstiens (LANL)
● Rozelle Wright (LANL)
● Ned Arnold (Argonne)
● John Maclean (Argonne)

SNL and the SequencerSNL and the Sequencer

● The sequencer runs programs written in State Notation
Language (SNL)

● SNL is a ‘C’ like language to facilitate programming of
sequential operations

● Fast execution - compiled code
● Programming interface to extend EPICS in the real-time

environment
● Common uses

● Provide automated start-up sequences like vacuum or RF where
subsystems need coordination

● Provide fault recovery or transition to a safe state
● Provide automatic calibration of equipment

Advantages of SNLAdvantages of SNL

● Can implement complicated algorithms
● Can stop, reload, restart a sequence program without rebooting
● Interacts with the operator through string records and mbbo

records
● C code can be embedded as part of the sequence
● All Channel Access details are taken care of for you
● File access can be implemented as part of the sequence

Should I Use the Sequencer?Should I Use the Sequencer?
START

CAN I DO
THIS IN A

DB?

Y

N

CAN I DO
THIS IN A

DB?

Y

N

USE THE
SEQUENCER

USE A
DATABASE

END

When to Use the SequencerWhen to Use the Sequencer

● For sequencing complex events,
e.g. parking and unparking a
telescope mirror

1-s1;5
PARK

1

2
3 4

9

10

11

5

6

7

8

12

13

14

15

16

17
Initialising

Parked
Misaligned

Stopped

M1STATE = OTHER / M1STATE = NOT_DOWN & EXTENDED /

M1STATE = DOWN & CENTRED & RETRACTED /

UNPARK_CMD /
REJECT_CMD

PARK_CMD /

FaultM1STATE = RETRACTED & NOT_DOWN /

Raising

Deflating

Depressurising

Post-Parked

Manual-Mode

PRE-PARK_CHECKS = PASS /
PSS = OFF
;RETRACT_AXIAL_SUPPORTS

PARK_CMD /
PSS = ON
;MOVE_TO_PRE-PARK

POST-PARK_CHECKS = FAIL /
UNPARK_ALARM

PRE-PARK_CHECKS = FAIL /
PARK_ALARM

PARK-CMD /
PSS = ON
;AOS = OFF
;MOVE_TO_PRE-PARK

UNPARK_CMD /
REJECT_CMD

PARK_CMD /
PSS = ON
;MOVE_TO_PRE_PARK

Operating

UNPARK_CMD /
PSS = ON
;INFLATE_SEALS;

UNPARK_CMD /
MOVE_TO_NOP ;
INFLATE_SEALS;

Realigning

POST-PARK_CHECKS = PASS /
PSS = ON;
MOVE_TO_NOP ;
INFLATE_SEALS;

Inflating

Pressurising

Pre-Parked

Lowering

SEALS = INFLATED /
APSS = ON

APSS = PESSURISED /
AOS = ON ;PARK-CMD /

AOS = OFF
;MOVE_TO_PRE-PARK

APSS = DEPRESSURISED /
DEFLATE_SEALS

SEALS = DEFLATED /

IN_PRE-PARK_POSN /

IN_POST-PARK_POSN /

UNPARK_CMD /
PSS = ON;
MOVE_TO_POST-PARK

M1STATE = DOWN & CENTRED & RETRACTED /

INTERLOCK_RXD /
STOP_SUPPORTS

Interlocked INTERLOCK_REMOVED /

PSS_ON_CMD /
PSS =
ON

PSS_OFF_CMD /
PSS =
OFF

Photograph courtesy of the Gemini Telescopes project

Where is the Sequencer?Where is the Sequencer?
● On the IOC:

Channel Access

LAN

Device Support

I/O Hardware

IOC

Database Sequencer

Where is the Sequencer?Where is the Sequencer?
● On the workstation:

MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

Tools

Sequencer

LAN Channel Access

The Best Place for the SequencerThe Best Place for the Sequencer

● Traditionally, sequencers run in the IOC
Recent versions of the sequencer can be run either in an IOC
or as a standalone program on a workstation

● Locating them within the IOC they control makes them easier to
manage and independent from network issues

● Running them on a workstation can make testing and
debugging easier

● On a workstation, SNL provides an easy way to write simple CA
client programs

SNL Implements State Transition DiagramsSNL Implements State Transition Diagrams

State A

State B

Event

Action

Transition
A to B

Example – State Transition DiagramExample – State Transition Diagram
Start

Low vacuum

High vacuum

pressure < 4.9 uTorr

Open the valve, switch to Cryo pump

pressure > 5.1 uTorr

Close the valve, switch to Rough pump

SNL – General Structure and SyntaxSNL – General Structure and Syntax

program program_name
declarations

ss state_set_name {

state state_name {

 entry {
 entry action statements
 }

 when (event) {
 action statements
 } state next_state_name

 when (event) {
 ...

 } state next_state_name

 exit{
 exit action statements
 }

}
state state_name {

 ...
}

}

A program may contain multiple state sets.

A state set becomes a task or thread.
A state is an area where the task waits for

events. The first state defined in a state set is the
initial state.
Actions to do on entry to this state from another

state.
Defines an event for which this state waits and

actions to do when the event occurs.
Specifies the following state after the actions

complete.

Actions to do before exiting this state to another
state.

Example – State Definitions and TransitionsExample – State Definitions and Transitions

pressure > .0000049
 RoughPump on
 CryoPump off
 Valve closed

pressure <= .0000049
 RoughPump off
 CryoPump on
 Valve open

pressure <= .0000049
 RoughPump off
 CryoPump on
 Valve open

pressure > .0000051
 RoughPump on
 CryoPump off
 Valve closed

10 minutes
 RoughPump off
 CryoPump off
 Valve closed

Initial State

Fault

High VacuumLow Vacuum

Example - DeclarationsExample - Declarations

double pressure;
assign pressure to “Tank1Coupler1PressureRB”;
monitor pressure;

short RoughPump;
assign RoughPump to “Tank1Coupler1RoughPump”;
short CryoPump;
assign CryoPump to “Tank1Coupler1CryoPump”;
short Valve;
assign Valve to “Tank1Coupler1IsolationValve”;
string CurrentState;
assign CurrentState to “Tank1Coupler1VacuumState”;

Example – State Transitions (w/o Actions)Example – State Transitions (w/o Actions)

program vacuum_control

ss coupler_control
{
 state init {
 when (pressure > .0000049) {
 } state low_vacuum
 when (pressure <= .0000049) {
 } state high_vacuum
 }
 state high_vacuum {
 when (pressure > .0000051) {
 } state low_vacuum
 }
 state low_vacuum {
 when (pressure <= .0000049) {
 } state high_vacuum
 when (delay(600.0)) {
 } state fault
 }
 state fault {
 }
}

Example – Initial StateExample – Initial State

state init {
 entry {
 strcpy(CurrentState, ”Init”);
 pvPut(CurrentState);
 }

 when (pressure > .0000049) {
 RoughPump = 1;
 pvPut(RoughPump);
 CryoPump = 0;
 pvPut(CryoPump);
 Valve = 0;
 pvPut(Valve);
 } state low_vacuum

 when (pressure <= .0000049) {
 RoughPump = 0;
 pvPut(RoughPump);
 CryoPump = 1;
 pvPut(CryoPump);
 Valve = 1;
 pvPut(Valve);
 } state high_vacuum
}

Example – State low_vacuumExample – State low_vacuum

state low_vacuum {
 entry {
 strcpy(CurrentState, ”Low Vacuum”);
 pvPut(CurrentState);
 }

 when (pressure <= .0000049) {
 RoughPump = 0;
 pvPut(RoughPump);
 CryoPump = 1;
 pvPut(CryoPump);
 Valve = 1;
 pvPut(Valve);
 } state high_vacuum

 when (delay(600.0)) {
 } state fault
}

Example – State high_vacuumExample – State high_vacuum

state high_vacuum {
 entry {
 strcpy(CurrentState, ”High Vacuum”);
 pvPut(CurrentState);
 }

 when (pressure > .0000051) {
 RoughPump = 1;
 pvPut(RoughPump);
 CryoPump = 0;
 pvPut(CryoPump);
 Valve = 0;
 pvPut(Valve);
 } state low_vacuum
}

Example – State faultExample – State fault

state fault {
 entry {
 strcpy(CurrentState, ”Vacuum Fault”);
 pvPut(CurrentState);
 }
}

Building an SNL ProgramBuilding an SNL Program

● Use editor to build the source file. File name must end with
“.st” or “.stt”, e.g. “example.st”

● “make” automates these steps:
● Runs the C preprocessor on “.st” files, but not on “.stt” files.
● Compiles the state program with SNC to produce C code:

snc example.st -> example.c
● Compiles the resulting C code with the C compiler:

cc example.c -> example.o
● The object file "example.o” becomes part of the application library,

ready to be linked into an IOC binary.
● The executable file “example” can be created instead.

Running an SNL ProgramRunning an SNL Program

From an IOC console
● On vxWorks:

seq &vacuum_control

● On other operating systems:
seq vacuum_control

● To stop the program:
seqStop “vacuum_control”

DebuggingDebugging

Use the sequencer's query commands:
seqShow

– displays information on all running state programs
seqShow vacuum_control

– displays detailed information on program
seqChanShow vacuum_control

– displays information on all channels
seqChanShow vacuum_control,”-”

– displays information on all disconnected channels

DebuggingDebugging

● Use printf functions to print to the console
printf("Here I am in state xyz \n");

● Put strings to PVs
sprintf(seqMsg1, "Here I am in state xyz");
pvPut(seqMsg1);

● On vxWorks/RTEMS you can reload and restart
seqStop vacuum_control

... edit, recompile ...
ld < example.o
seq &vacuum_control

Additional FeaturesAdditional Features

● Connection management:
when (pvConnectCount() != pvChannelCount())
when (pvConnected(Vin))

● Macros:
assign Vout to "{unit}:OutputV";

● must use the +r compiler option for this if more than one copy of the sequence is
running on the same IOC

seq &example, "unit=HV01"

● Some common SNC compiler options:
● +r make program reentrant (default is -r)
● -c don't wait for all channel connections (default is +c)
● +a asynchronous pvGet() (default is -a)
● -w don't print compiler warnings (default is +w)

Additional FeaturesAdditional Features

● Arbitrary C code can be embedded
%% escapes one line of C code
%{

escape any number of lines of C code
}%

● Access to channel alarm status and severity:
pvStatus(var_name)
pvSeverity(var_name)

● Queued monitors save CA monitor events in a queue in the
order they come in, rather than discarding older values when
the program is busy
syncQ var_name to event_flag_name [queue_length]

pvGetQ(var_name)
● removes oldest value from variables monitor queue. Remains true until queue is

empty.
pvFreeQ(var_name)

Again: Should I Use the Sequencer?Again: Should I Use the Sequencer?
START

CAN I DO
THIS IN A

DB?

Y

N

CAN I DO
THIS IN A

DB?

Y

N

USE THE
SEQUENCER

USE A
DATABASE

END

Can I Do This in a Database?Can I Do This in a Database?

pressure > .0000049
 RoughPump on
 CryoPump off
 Valve closed

pressure <= .0000049
 RoughPump off
 CryoPump on
 Valve open

pressure <= .0000049
 RoughPump off
 CryoPump on
 Valve open

pressure > .0000051
 RoughPump on
 CryoPump off
 Valve closed

10 minutes
 RoughPump off
 CryoPump off
 Valve closed

Initial State

Fault

High VacuumLow Vacuum

Sure! How many records do you
think would be needed?

Hands-On: SNLexampleHands-On: SNLexample

wget http://pubweb.bnl.gov/~rlange/SNLexample.tar.gz

This tarball contains:
● These slides (for reference)
● Simulation in vessel.db:

$(P):pressure, $(P):rough, $(P):valve, $(P):cryo
Setting $(P):leak to 1 will simulate a leak

● DB state machine in calcfsm.db (for reference)

Create the Example IOCCreate the Example IOC

● Create the Application Development Environment
mkdir TOP; cd TOP
makeBaseApp -t ioc vacuum building environment
makeBaseApp -t ioc -i myIOC IOC boot structure
cp ../*.db vacuumApp/Db copy db files over

● Add vessel.db to Makefile in vacuumApp/Db
● make
● Add vessel.db to startup script in iocBoot/iocmyIOC/st.cmd

(needs a P macro)
● cd iocBoot/iocmyIOC; chmod a+x st.cmd
● Run the IOC as ./st.cmd

Next StepsNext Steps

● Add an edm panel to see stuff working
● Add a db with a single mbbi record ($(P):state) for

communicating the current state
● Write the SNL program (in vacuumApp/src)
● Add the SNL program to Makefile in vacuumApp/src
● Make (best done on TOP level)
● Add starting the state machine to the startup script
● Restart the IOC, debug and have fun

● You can also run vessel.db and calcfsm.db on an IOC to see
the db implementation working

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

